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Abstract

A simple scheme has been developed to discriminate surface, sun glint and cloud prop-
erties in satellite based spectrometer data utilizing visible and near infrared information.
It has been designed for the use with data measured by SCIAMACHY’s (SCanning
Imaging Absorption SpectroMeter for Atmospheric CHartographY) Polarization Mea-5

surement Devices but the applicability is not strictly limited to this instrument. The
scheme is governed by a set of constraints and thresholds developed by using satel-
lite imagery and meteorological data. Classification targets are ice, water and generic
clouds, sun glint and surface parameters, such as water, snow/ice, desert and vegeta-
tion. The validation is done using MERIS (MEdium Resolution Imaging Spectrometer)10

and meteorological data from METAR (MÉTéorologique Aviation Régulière – a network
for the provision of meteorological data for aviation). Qualitative and quantitative val-
idation using MERIS satellite imagery shows good agreement. The comparison with
METAR data exhibits very good agreement.

1 Introduction15

Cloud, sun glint and surface classifications utilizing space-borne measured data have
a long history. The motivation for cloud and surface classifications are manifold, for
example the creation of global thematic maps for civil and military use, generate time-
series for climate studies or derive correction factors and climatologies for geophysical
parameter retrieval. This study is focusing on the latter issue, i.e. the use of global20

classified values in order to provide adequate input values especially for retrievals of
atmospheric parameters.

The retrieval of atmospheric parameters can significantly be hampered by wrong
input assumptions. For this reason precise cloud and surface classifications have to be
derived. Some examples for affected retrievals are:25

– Cloud top height retrievals of partially cloud covered ground scenes from the O2-
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A-band need a precise input ground albedo (Kokhanovsky et al., 2005), especially
in regions, where changes from a water to snow/ice surface lead to an significant
increase of the surface albedo.

– Aerosol retrievals are known to be error-prone over sun glint occurrences. There-
fore sun glint areas need to be flagged out of the aerosol retrievals (de Graaf and5

Stammes, 2005).
– Trace-gas (Buchwitz et al., 2005) and aerosol (von Hoyningen-Huene, 2006) re-

trievals known to be very sensitive to the existence of even small fractions of
clouds in the field of view need a reliable cloud-flagging algorithm.

Here and in the following we consider sun-glint, the specular reflection of light into the10

detector also as a surface effect.
Necessary classifications for a broad set of parameters can be retrieved using satel-

lite imagery at moderate spectral and comparatively high spatial resolution. Exam-
ples for such instruments are MERIS (MEdium Resolution Imaging Spectrometer)
aboard ESA’s ENVISAT (ENVIronmental SATellite) and MODIS (MODerate Resolu-15

tion Imaging Spectroradiometer) which is a key instrument aboard NASA’s Terra (EOS
AM) and Aqua (EOS PM) satellites.

Retrievals of atmospheric trace gases often take advantage of the spectral fine
structure of the absorption process in question. Among lot of very successful atmo-
sphere satellite missions within the last decade the SCanning Imaging Absorption20

SpectroMeter for Atmospheric CHartographY (SCIAMACHY, as MERIS installed a-
board ENVISAT) is one of the outstanding instruments whose primary objective is the
global measurement of trace gases in the troposphere and stratosphere. However, the
spatial resolution is low compared to an imager such as MERIS or MODIS.

This study aims to analyze the feasibility to classify clouds and surfaces utilizing25

solely measurements from the atmospheric sensor, such as SCIAMACHY. In principle
a multi-sensor approach using for example MERIS classifications with SCIAMACHY
retrievals is possible. However, failures or missing imagery data are propagating into
the analysis of the atmospheric sensor. Yet another problem is the enormous amount
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of imagery data to be gridded to match the low spatial resolution of the atmospheric
sensor which is a very time consuming computational step. The approach presented
here is therefore intentionally set up as an “autonomous” one: only SCIAMACHY data
are involved to classify the geophysical parameters in question. We therefore have
developed a set of algorithms and constraints to have an independent, fast and sim-5

ple approach. Yet another advantage is that the spectral as well as spatial sensitivity
of the classification is compatible to the sensitivity of the retrieval of the atmospheric
parameters.

In this study satellite imagery is used primarily to validate SCIAMACHY classifica-
tions and secondarily for the adjustment of the algorithms. As clouds or sun glint 1 are10

highly variable spatio-temporal objects a close temporal coincidence between SCIA-
MACHY-based classifications and those of the imagers must be ensured. Since MERIS
is located on the same platform and has basically the same measurement geometry
as SCIAMACHY (in nadir mode) synchrony between both data sets is ensured. On the
other hand, SCIAMACHY and MERIS sensitivities for surfaces and clouds are likely to15

be different due to significant deviation in spatial and spectral resolutions.
The paper is organized as follows, first we will briefly explain some technical back-

ground information about the sensors SCIAMACHY and MERIS used within this study.
In the next section we will explain the algorithms used and finally show comparisons
with independent data.20

2 Instruments

2.1 SCIAMACHY

The SCanning Imaging Absorption spectro Meter for Atmospheric CHartographY, SCI-
AMACHY, is a passive hyperspectral UV/VIS/NIR grating spectrometer (Bovensmann

1and to less extend some surfaces as snow and ice
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et al., 1999). It was launched on-board the ENVISAT satellite in March 2002 into a
polar sun-synchronous orbit, crossing the Equator on its descending node (i.e. south-
wards) at 10:00 a.m. local time. The instrument covers the solar radiation transmitted,
backscattered and reflected from the atmosphere at relatively high spectral resolution
(0.2 nm to 1.5 nm). It records data in eight separate main channels (non-continuously),5

over the spectral range 240 nm to 2380 nm, and in selected regions between 2.0µm
and 2.4µm. The nominal spatial resolution in nadir viewing geometry, however, is
comparatively poor being 60 km×30 km. The swath width of SCIAMACHY is 960 km.

From its orbit, SCIAMACHY can observe the Earth from three distinct viewing ge-
ometries nadir, limb and lunar/solar occultation. In this study only nadir measurements10

are used.
Beside the main channels, also called science channels, there are seven addition-

ally broadband detectors which measure the polarization of the incoming light. These
Polarization Measurement Devices (PMD) (see Table 1) cover the spectral range of the
science channels (2 to 6 and 8) and are provided to apply corrections to the polarization15

sensitivity of the science channels. The PMDs are mainly sensitive to parallel polarized
light (parallel to the instrument slit), while the science channels measure sensitive to
both polarization components. Information on the polarization of the incoming light is
therefore obtained by combining the two measurements.

The PMDs are read out at 40 Hz, but are down-sampled to 32 Hz for processing.20

This still gives a spatial resolution of ∼7 km×30 km which is better compared to the
science channels, where the fastest read-out occurs at 8 Hz, but more commonly at
1 Hz. Therefore, the advantage of working with PMD data is that information is given
at higher spatial resolution and it is used as sub-pixel information for the much larger
SCIAMACHY measurements based on science spectra.25

2.2 MERIS

MEdium Resolution Imaging Spectrometer (MERIS) aboard of ENVISAT provides
15 spectral bands, which are programmable in position, width and gain. In practice,
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these technical characteristics are kept constant most of the time.
Measurements are performed in the 390 nm to 1040 nm spectral range (see Table 2)

with an average channel width of about 10 nm . MERIS is a “push-broom” spectrometer
and has a 68.5◦ field of view around nadir. The swath width of 1150 km is slightly larger
than SCIAMACHY’s. The instrument acquires data in Reduced Resolution mode (RR)5

and Full Resolution mode (FR). The spatial resolution is about 1.1 km in RR mode
and 300 m in FR mode. We focus in this study on data in RR mode due to a broad
availability of the data.

3 Algorithms

We developed a suite of algorithms and constraints which we called SPICS (SCIA-10

MACHY–PMD based Identification and classification of Clouds and Surfaces). All of
them use ratios of two PMD radiance values each (see Krijger et al., 2005), the PMD
reflectance value for a wavelength λ and values derived therefrom. PMD reflectance
R(λ) for a wavelength λ is defined as:

R(λ) =
I(λ)

I0(λ) � µ0
(1)15

where I is the PMD radiance value, I0 is the PMD solar irradiance and µ0 is the cosine
of the solar zenith angle.

SPICS is organized with respect to three classification groups: clouds, sun glint and
surfaces. It is capable to differentiate between five surface types: vegetation, snow/ice,
desert, water and land/soil as well as three cloud types: ice, water and generic clouds.20

All results obtained with the methods described below were tuned with respect to
independent data sources such as co-located MERIS and meteorological data sources
such as METAR.
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3.1 Cloud phase

Cloud phase retrieval with SCIAMACHY has been performed before using the science
detectors (Accareta et al., 2004; Kokhanovsky et al., 2005). Introducing PMDs instead
of them results in a better spatial resolution.

Ice clouds, for example, appear brighter and normally whiter than water clouds when5

looking from space. Liquid water clouds usually let light penetrate deeper and absorp-
tion is leading to an increased level of grayness. To quantify cloud grayness we have
selected the radiance values of PMD2, PMD3 and PMD4.

First we define the grayness b of a scene as the (scaled) average of the three se-
lected PMD reflectances (R2, R3, R4):10

b = av(R2, R3, R4) ∗ S (2)

For convenience the factor S scales the values of b from 0 up to 100. Seldom
occurrences of brightness values larger 100 have been clipped. A similar concept for
cloud/snow/ice–discrimination has been applied successfully by (Krijger et al., 2005).

In order to determine the range between the individual reflectance values the quantity15

r is also used. r is defined as the range of the three PMD reflectances normalized to
the average value:

r =
max(R2, R3, R4) − min(R2, R3, R4)

av(R2, R3, R4)
(3)

The determination of r is essential for having a measure of goodness of the gray
value. For example, a large value of r indicates more color but not a high degree of20

grayness. A well-tuned set of thresholds for b, r and R5 helps to classify ice, water and
generic clouds as well as different surface types (see Tables 3/4).

3.2 Surface classification

Each surface classification approach is briefly explained in the following.
Tables 3 and 4 summarize all applied thresholds. Multiple classifications are allowed.25
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However, from each classification group only one parameter may contribute to the over-
all result.

For vegetation and sun glint the gray-value concept is not used. In the latter case it
turned out that vegetation classification is clearly superior using a modified NDVI (Nor-
malized Differenced Vegetation Index) approach. For vegetation we therefore define5

the NDVI n analogous:

n =
R4 − R3

R4 + R3
(4)

Applying a cutoff value of <1.18 removes non-vegetation ground pixels reliably. How-
ever, light reflected from vegetation is able to induce a considerable polarization com-
ponent depending on the health state of the plant. Therefore, this modified NDVI is a10

first estimation.
Sun glint is specular reflection of sun light by adequately tilted facets of water into the

detector. Careful analysis of this effect could for example help to improve aerosol re-
trievals, otherwise it can strongly be affected by this effect (see de Graaf and Stammes,
2005).15

Sun glint is able to exhibit a considerable degree of polarization. This can be ob-
served when investigating SCIAMACHY’s PMD signals. To uncover sun glint’s polar-
ization features we define the ratio ρ74=I7/I4. I7 and I4 (ATBD, 1999) are the radiance
values for PMD seven and four and are primarily sensitive to Stokes vector elements
U and Q (Coulson, 1988), respectively. Following standard text books the ratio U/Q20

can be related to χ=0.5 arctanU/Q, which is the tilt angle of the polarization ellipsoid.
Thus the ratio ρ74 is related to χ . It should be noted that for unpolarized light U and Q
are zero, therefore χ is undefined.

Examining the ratio ρ74 globally over three months of data a clear contrast of sun
glint regions to others can be found. If the angle χ over water is larger (or equals)25

zero and smaller 32.6◦ (0<ρ74<2.168) sun glint can be classified reliably. Without lim-
itation to water this approach would also detect sun glint over various desert regions
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due to increased amounts of polarization of the reflected light – and therefore a well-
defined value χ . The water-land discrimination procedure is using the radiance ratio
from PMD5 and PMD4 which exhibit a clear water-land contrast. The threshold inter-
vals to eliminate land pixels can be found in Table 4. Please note, that the water-land
discrimination is not strongly affected by changing the threshold limits. This enables5

also occasional detections over land which can be identified as lakes, wetlands or flood
plains.

The last test is to ensure proper geometrical conditions: An absolute value of an
azimuth difference of 40 ◦ between line-of-sight and sun position may not be exceeded
(same condition seen in Qin et al., 2006). As mineral dust aerosols contribute to the10

depolarization of the detected light and the ratio U/Q lies within a limit where significant
polarization is expected, no substantial impact of (desert) aerosols is observed. In
Fig. 1 sun glint detections are shown for the central Mediterranean.

Note, that the quality of the ratio U/Q from SCIAMACHY PMD measurements was
under discussion (Krijger and Tilstra, 2003; Schuttgens et al., 2004). The background15

of the discussion is that the PMDs provide essential input for the Polarization Correction
Algorithm (PCA) of SCIAMACHY. For the PCA the requirements regarding the accuracy
of the PMD measurements are comparatively high. However, the approach presented
here is not affected – as the ratio ρ74 or the angle χ is not needed as an absolute value.

Liquid water classification can be an important issue for several other retrievals20

where the derivation of a geophysical parameter is either hampered, like for instance in
case of the retrieval of CO, CH4 (Buchwitz et al., 2005) or only possible like in case of
chlorophyll concentration (Vountas et al., 2007). The thresholds used for the classifica-
tions where derived on the base of comparison with a large amount of MERIS-pixels.
We found that b (as defined in Eq. 2) must be smaller 40, indicating a low level of25

brightness (obviously, as water appears blue). Since water reflects (for both polariza-
tions) very poorly in the near infrared R5 will be low. A reliable threshold for water pixels
is R5<0.020.

The Snow/ice classification is based on the radiance ratio for PMD five to four, ρ54, as
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already proposed by Krijger et al. (2005). However, we adjusted the thresholds to the
daily updated AMSR-E sea ice maps (see Heygster and Borgmann, 2008) but derived
slightly different thresholds and an additional constraint. We propose that the radiance
ratio should be within the following interval: 0≥ρ54P >0.2 where the reflectance R5
should be 0.06≥R5<0.0185

Desert classification is also based on the radiance ratio for PMD five to four, ρ54.
Comparisons with data from the global land cover 2000 project (GLC, 2000) showed
that ρ54 should be larger or equal 1.7 indicating that both channels exhibit a sufficient
contrast over desert. In order to distinguish clouds over desert the reflectance for PMD
five must be: 0.110≥R5<0.245. Desert classification, however, has been limited to a10

corridor between ±60◦ in order to avoid having mismatches with snow/ice classifica-
tions on antarctica.

Land/soil classification is based on r which must be smaller or equal 25, the ground
scene will have to be more grayish than in case of water classifications. An additional
constraint using R5 ensures reliable classification of land pixels: 0.05≥R5<0.092.15

4 Validation

The analysis of classifications of vegetation, water and land (soil or desert) is com-
paratively trivial when comparing with true or pseudo-true color imagery. Sun glint
is a rapidly changing parameter over the orbit but can also be identified very easily
through visual analysis. This holds for the cloud detection using SPICS. As MERIS20

measures the same scene at the same time as SCIAMACHY it is straightforward to
use it for the comparisons. As a first qualitative test we have prepared pseudo- RGB
(red/green/blue) images using eight channels of MERIS. MERIS level 1 data in re-
duced resolution (1.1 km×1.1 km) were used for the RGB representation and mapped.
SPICS classifications were overlayed the MERIS pseudo-RGB for several scenes and25

showed good agreement. Exemplarily Fig. 1 shows two orbits of two consecutive days
(21 and 22 August 2007) over central Mediterranean Sea. The classifications are in
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good agreement with the underlying MERIS image. Broken clouds near Italy as well
as large cloud formations in the west are well represented. Water and land classifica-
tions for the eastern orbit over cloud-free Greece and the Aegean Sea are reproducing
the actual MERIS scene reliably. The transition from vegetation to soil and desert
over Tunisia is also well classified. Furthermore the clear surface/sun-glint contrast5

classified by SPICS at the east coast of Tunisia is obviously reproducing the actual
conditions during the measurement represented by MERIS’ RGB imagery. Gaps with
missing classifications are due to inadequate threshold intervals. They are more fre-
quent in regions of partial or complete cloud coverage, as can be seen in some regions
of the western orbit.10

A first attempt was made to further validate the discrimination of general cloud and
ice cloud classification in the next section.

4.1 Cloud phase classification

As explained above SPICS allows the discrimination of cloud types. The types can
roughly be classified as ice clouds, water clouds and generic clouds. The latter in-15

cludes those which were classified as clouds but the phase discrimination could not be
performed.

In order to make a first step towards a validation we compared SPICS’ cloud type
classification with results of MERIS level 2 data. MERIS cloud type products (Meris
Products specifications, 2007) are available at reduced spatial resolution of about20

1.1 km×1.1 km. To use this data within SCIAMACHY’s field of view their results must be
gridded down. MERIS provides basically nine cloud types which we have re-classified
to family A, B and C clouds.

– Family A: high clouds with large amount of ice crystal (Cirrus, Cirrostratus and
deep convection).25

– Family B: middle clouds. Mainly water clouds frequently containing super cooled
droplets, as well as small amounts of ice crystals (Altocummulus, Altostratus,
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Nimbostratus).

– Family C: low water clouds (Cummulus, Stratocummulus, Stratus)

The comparison was performed over one set of SCIAMACHY measurements in
South-East Europe. Figure 2a) shows the results for SPICS, Fig. 2b) MERIS cloud
family classifications which have been gridded to SCIAMACHY PMD ground pixel sizes5

and Fig. 2c) a full resolution true color image of MERIS for improved visualization which
was provided by European Space Agency (ESA) via web front-end (unfortunately no
full resolution level 2 data were available). In some cases the gridding of MERIS clas-
sifications to create Fig. 2b) led to multiple cloud family detections within one SCIA-
MACHY PMD ground pixel. In such cases we selected the predominant family by10

taking the classification providing at least 75% of the whole amount of pixels gridded.
For clarity both Figs. (2a and b) show only cloud (phase) classifications, simultane-

ous surface classifications are not shown. Good qualitative agreement between SPICS
ice and water cloud classifications with MERIS family A and B cloud classifications can
be found. Both figures also reveal strengths and weaknesses: SPICS is capable to de-15

tect even geometrically thin clouds (especially near river Dniester at about 26◦ lon/48◦

lat) where MERIS did not detect clouds. However, MERIS is able to detect compara-
tively small clouds due to its high spatial resolution (for example, at Danube Delta, over
Black Sea and near Crimea). When comparing with the (pseudo-) true color image
of MERIS (Fig. 2c) in full resolution the frazzled and whitish-thin appearance of lot of20

clouds within this scene give reason to suspect that cirrus clouds are involved. How-
ever, neither MERIS nor SPICS classifications could proof this for the ground pixels in
question.

To elaborate the classifications quantitatively the validation will be extended to the
comparison involving thermal infrared measurements in a future study. Here, data25

of AATSR (Advanced Along-Track Scanning Radiometer) aboard ENVISAT will be
utilized in order to be able to discriminate cloud phase information more reliable
(Kokhanovsky, 2006).
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4.2 Quantitative validation using MERIS

To validate SPICS classifications on a global scale, MERIS level 2 data were used
again for obvious reasons. MERIS classifications for water, land and clouds are avail-
able from level 2 data at reduced spatial resolution of 1.1 km×1.1 km. The simultaneous
MERIS classifications for 22 August 2007 were matched to SCIAMACHY ground pixel5

size and location. Here, MERIS classifications were gridded to SCIAMACHY PMD size
and location. Typically more than 100 MERIS classifications were gridded to one SCIA-
MACHY PMD ground pixel. Among the individual MERIS classifications the number of
occurrences were stored. More than 22 million MERIS pixels were gridded to over
120 000 SCIAMACHY PMD ground pixel. Multiple classifications for one ground pixels10

are possible for both data sets, however, for different reasons: while SPICS classifies
different surface or cloud properties through the exploitation of a set of thresholds re-
lated to different spectral or polarization sensitivities of SCIAMACHY, MERIS is capable
to deliver classifications at SCIAMACHY’s sub-pixel level.

Related to the total amount of SCIAMACHY PMD ground pixels 22.5% of all water15

classifications using SPICS could be matched to MERIS (absolute number of matches
and mismatches can be found in Table 5). 30.6% of all land classifications and 47.4%
of all cloud classifications from SPICS could be matched to MERIS. 0.16% of all values
could not be matched in any of the three classes.

However, the amount of mismatches is not negligible: If we require that at least20

130 (87% of possible MERIS values) gridded into one SCIAMACHY PMD ground pixel
follow one classification, for example water, the amount of mismatches is 5.9%. For
land this is 2.5%. Requiring at least 100 (ca. 67% of possible MERIS values within one
SCIAMACHY PMD ground pixel), the amount of mismatched pixels increases to 11%
and 5%, respectively. If we require only the maximum of one classification, the amount25

of mismatched pixels increases to 15% and 7.5%. This indicates that the mismatches
are due to the significant difference in the spatial resolution.

Moreover, this behavior reveals a potential weakness of the comparison: while clas-
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sifications using SPICS are based on broadly spatially averaged spectral informa-
tion, MERIS classifications were based on spectral information averaged over a much
smaller area. Water mismatches are relatively frequent due to the inability of SPICS to
detect small coverage of water within one SCIAMACHY PMD ground pixel, i.e. in the
vicinity of bright cloud fields, small patches of water and land are outshone.5

Regardless of the mismatch in spatial resolution the comparison reveals (Table 5)
that still 22% of all classifications match for water, 31% for land and 47% for clouds
– without requiring a certain amount of land or water pixels within the SCIAMACHY
pixels. However, these results can at best be considered as satisfactory. Obviously,
the averaging of MERIS radiance/reflectance values to be done prior classification.10

This approach is avoided here due immense computational effort necessary. Instead
the validity of the individual approaches used within SPICS is checked using “ground
truth” data from METAR–MÉTéorologique Aviation Régulière (Metar online, 2008).

4.3 Comparisons with METAR data

METAR delivers relevant meteorological data for aviation. However, the data are useful15

also for the validation of SPICS – especially for regions of mixed snow/ice and clouds.
Hourly data of 72 METAR (airport based) measurement stations were collected over
three months which resulted into a complete data set with over 280 000 records. Co-
located station data sets were compared with SPICS classifications.

Figure 3 shows a large area of Greenland with two METAR stations: Kulusuk20

Lufthavn (METAR station code: BGKK) and Constable Pynt (METAR station code:
BGCO). Classifications have been computed for SCIAMACHY orbit 29 423. Two con-
secutive MERIS scans have been overlayed the data set to provide additional pseudo-
true color information.

Station BGKK reports complete overcast during SCIAMACHY and MERIS measure-25

ments with a horizontal visibility larger than 1 km and a surface temperature of 0◦ Cel-
sius. The reported cloud bottom height was 1.2 km. From preceding and succeed-
ing orbits, as well as meteorological METAR data we found that the headland where
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the station is located was snow-clad. This has also been the case for station BGCO.
BGCO, however, reports clear sky during over-flight of ENVISAT with a visibility larger
than 10 km and a surface temperature of −8 ◦ Celsius (14:50h UTC).

The observations reported are in agreement with SPICS’ classification: snow clas-
sifications are determined for BGCO station and vicinity whereas cloud classifications5

agree with the reports from BGKK. Underlying MERIS pseudo-true color images sup-
port that the snow and cloud classifications generally worked well but the visual dis-
crimination based on MERIS imagery remains difficult in the vicinity of the two stations.
However, the underlying MERIS pseudo-true color images are useful for the western
part of the measurement cycle near BGKK station. Here the imagery shows a large10

field of clouds over ice which exhibits a clear (textural) contrast to the surrounding ice
field. However, there are also numerous failed classifications in these regions where
the classification thresholds are not adequate and have still to be fine-tuned further.

To evaluate the quality of SPICS results more generally we have extended the com-
parison to all stations. Co-locations were defined within a circle with 3 km radius around15

the center coordinates of the station which had to include the PMD’s center coordi-
nates and with a maximum temporal difference of 15 min. As common for aviation
data METAR’s cloud fraction is given in two oktas and refer either to a measured or
human-observed quantity within the visual horizon.

58 co-locations met the requirements. Analyzing the data set carefully revealed that20

55 SPICS classifications were in agreement with METAR. The following results were
obtained:

– In 50 cases SPICS classified the SCIAMACHY pixel as cloudy and METAR re-
ports for the corresponding co-location at least 25% cloud fraction.

– In five cases SPICS is able to classify the surface and METAR reports sufficiently25

low cloud fraction which is less or equal 25%. The experience made from MERIS
comparisons (see chapter 4.2) showed that SPICS has the ability to detect the
surface when a small fraction of the ground pixel is cloud covered. In four of five
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cases SPICS classified the surface being snow/ice covered and the meteorologi-
cal databases confirmed it.

– In three cases SPICS classifies the surface and METAR reports medium to high
values for the cloud fraction (larger 25% and smaller 88%). This scenario can be
disputed, as SPICS/SCIAMACHY has only limited ability to classify surfaces in5

the presence of larger and optically thick cloud fields within the field of view.

– In no cases SPICS classified the pixel as cloudy and METAR reported complete
cloud free conditions.

Reducing the temporal interval to one minute led to no mismatches and 10 agree-
ments.10

5 Conclusions

A scheme has been developed to identify and classify clouds and surfaces which we
have called SPICS: SCIAMACHY-PMD based Identification and classification of Clouds
and Surfaces. It is based on SCIAMACHY’s polarization measurement device data uti-
lizing a set of thresholds and constraints. The approach was motivated to create an15

independent, fast, simple and spectral as well as spatial compatible way classifying im-
portant geo-physical parameters. The quantities classified are: ice, water and generic
clouds, sun glint and surface parameters, such as water, snow/ice, desert and vegeta-
tion.

The applicability is not limited to SCIAMACHY. Other instruments designed with sim-20

ilar concepts, as for example GOME-2 (Global Ozone Monitoring Experiment) could
benefit from the classification scheme after adapting corresponding thresholds.

The validation of SPICS results was performed against MERIS qualitatively and
quantitatively. Qualitatively the comparison was successful but the quantitative analy-
sis showed that the capability of SPICS classifying multiple characteristics (out of three25
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groups: clouds, sun glint and surfaces) was not always sufficient to reproduce the rich
variability of the measured imager scene. Due to the comparatively low spatial res-
olution of SCIAMACHY’s PMD measurements (7 km×30 km), SPICS has only limited
capability to resolve sub-pixel information. If, however, the amount of homogeneity
within one SCIAMACHY PMD ground pixel is sufficient (as a rule of thumb: > 80%),5

SPICS and MERIS classifications are in reasonable agreement. The mismatches of
classification results observed could, however, not only be led back to the deficiencies
of SCIAMACHY’s spatial resolution. For example, MERIS full resolution (FR) imagery
showed optically (and geometrically) thin clouds which were classified by SPICS as
such but the MERIS classification did not detect clouds at all.10

The validation was additionally performed against METAR (a network for the provi-
sion of meteorological aviation) data. Here, the agreement at co-located data points
was very promising. Forcing even tighter limits decreases the number of co-locations,
as expected, but increases the number of classification matches, while the amount of
mismatches drops to zero. It is planned to extend the local METAR data set in order15

to perform the validation on a broader spatial and temporal base and use these re-
sults to potentially fine-tune SPICS’ thresholds. Another future work step planned is
the validation of cloud phase classifications which has to be consolidated using AATSR
data.

The validation to show SPICS’ capability to separate clouds and snow/ice covered20

surfaces has been done using MERIS imagery and METAR data. First promising re-
sults for Greenland could be shown. However, the study is planned to be extended:
more METAR data have to be collected to provide a large data base to ensure a suf-
ficient amount of temporal and spatial coincidences with SPICS. Furthermore, it is
planned to test the utilization of cloud fractions derived by SPICS data as sub-pixel25

information for SCIAMACHY science pixels.
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Table 1. SCIAMACHY PMD channels.

Channel Range (nm)

1 310–365
2 455–515
3 610–690
4 800–900
5 NIR 1500–1635
6 2280–2400
7 45◦ 800–900
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Table 2. MERIS channels.

Channel Width (nm)

1 412.5 10
2 442.5 10
3 490.0 10
4 510.0 10
5 560.0 10
6 620.0 10
7 665.0 10
8 681.3 7.5
9 705.0 10

10 753.8 7.5
11 760.6 3.8
12 775.0 15
13 865.0 20
14 885.0 10
15 900.0 10

9875

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/8/9855/2008/acpd-8-9855-2008-print.pdf
http://www.atmos-chem-phys-discuss.net/8/9855/2008/acpd-8-9855-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
8, 9855–9881, 2008

Cloud and surface
classification

W. A. Lotz et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Table 3. Constraints for cloud type assignment.

Parameter Description Range

Clouds
Ice cloud Bright white 70 ≤ b < 100

0.0 ≤ r < 5.0
0.050 ≤ R5 < 0.100

White 50 ≤ b < 80
0 ≤ r < 10.0
0.050 ≤ R5 < 0.10

Milk white 30 ≤ b < 60
0.0 ≤ r < 20.0
0.050 ≤ R5 < 0.090

Gray 20 ≤ b < 45
0.0 ≤ r < 40.0
0.050 ≤ R5 < 0.090

Water cloud Bright white 70 ≤ b < 100
0.0 ≤ r < 5.0
0.100 ≤ R5

White 50 ≤ b < 80
0 ≤ r < 10.0
0.100 ≤ R5

Milk white 30 ≤ b < 60
0.0 ≤ r < 20.0
0.090 ≤ R5

Gray 20 ≤ b < 45
0.0 ≤ r < 40.0
0.090 ≤ R5

Legend:
b brightness, Ri reflectance PMDi
r rel. range, ρ54 radiance ratio I5/I4
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Table 4. Constraints for surface type assignment.

Parameter Description Range
Surfaces

Sun glint t < 40
ρ74 < 2.168
R4 < 0.0600
R5 < 0.0725

Water b < 40
n < 1.00

0.000 ≤ R5 < 0.020
Snow and ice All except 0.00 ≤ ρ54 < 0.20

Antarctica 0.0015 ≤ R5 < 0.0360
Only latc < −60
Antarctica 0.00 ≤ ρ54 < 0.40

Vegetation 1.18 ≤ n

Desert −60 ≤ latc < 60
1.670 ≤ ρ54
0.000 ≤ n < 1.110
0.110 ≤ R5 < 0.260

Land 20 ≤ b
25 ≤ r
1.200 ≤ ρ54
0.084 ≤ R5 < 0.185

Legend:
b brightness, Ri reflectance PMDi
r rel. range, ρ54 radiance ratio I5/I4
n NDVI, ρ74 radiance ratio I7/I4
t max. φ difference, latc/lonc center lat/lon
φ relative azimuth
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Table 5. SPICS and MERIS matches and mismatches.

Classification Matched mismatched

water 27 801 20 898
land 37 787 9301
cloud 58 488 18 659
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Fig. 1. Classification for the central Mediterranean Sea.
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a)

b)

c)

Fig. 2. Cloud classification for Southeast Europe and Black Sea. (a) Cloud classifications from
SPICS with underlying MERIS true color image with low spatial resolution; (b) MERIS results
after classifications into three altitude families and gridding (see text); (c) MERIS full resolution
true color image of the (highlighted) regions of interest.
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Fig. 3. Classification for Greenland for 16 Oct. 2007 (start time of the SCIAMACHY Orbit
29 423 was 14:10h UTC).
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